A Genetic Algorithm with Multi-Step Crossover for Job-Shop Scheduling Problems
نویسندگان
چکیده
Genetic Algorithms (GAs) have been designed as general purpose optimization methods. GAs can be uniquely characterized by their population-based search strategies and their operators: mutation, selection and crossover. In this paper, we propose a new crossover called multi-step crossover (MSX) which utilizes a neighborhood structure and a distance in the problem space. Given parents, MSX successively generates their descendents along the path connecting the both of them. MSX was applied to the job-shop scheduling problem (JSSP) as a high-level crossover to work on the critical path. Preliminary experiments using JSSP benchmarks showed the promising performance of a GA with the proposed MSX.
منابع مشابه
A New Multi-objective Job Shop Scheduling with Setup Times Using a Hybrid Genetic Algorithm
This paper presents a new multi objective job shop scheduling with sequence-dependent setup times. The objectives are to minimize the makespan and sum of the earliness and tardiness of jobs in a time window. A mixed integer programming model is developed for the given problem that belongs to NP-hard class. In this case, traditional approaches cannot reach to an optimal solution in a reasonable...
متن کاملA Simulated Annealing Algorithm for Multi Objective Flexible Job Shop Scheduling with Overlapping in Operations
In this paper, we considered solving approaches to flexible job shop problems. Makespan is not a good evaluation criterion with overlapping in operations assumption. Accordingly, in addition to makespan, we used total machine work loading time and critical machine work loading time as evaluation criteria. As overlapping in operations is a practical assumption in chemical, petrochemical, and gla...
متن کاملAn algorithm for multi-objective job shop scheduling problem
Scheduling for job shop is very important in both fields of production management and combinatorial op-timization. However, it is quite difficult to achieve an optimal solution to this problem with traditional opti-mization approaches owing to the high computational complexity. The combination of several optimization criteria induces additional complexity and new problems. In this paper, we pro...
متن کاملSolving Flexible Job Shop Scheduling with Multi Objective Approach
In this paper flexible job-shop scheduling problem (FJSP) is studied in the case of optimizing different contradictory objectives consisting of: (1) minimizing makespan, (2) minimizing total workload, and (3) minimizing workload of the most loaded machine. As the problem belongs to the class of NP-Hard problems, a new hybrid genetic algorithm is proposed to obtain a large set of Pareto-optima...
متن کاملSolving the Dynamic Job Shop Scheduling Problem using Bottleneck and Intelligent Agents based on Genetic Algorithm
The problem of Dynamic Job Shop (DJS) scheduling is one of the most complex problems of machine scheduling. This problem is one of NP-Hard problems for solving which numerous heuristic and metaheuristic methods have so far been presented. Genetic Algorithms (GA) are one of these methods which are successfully applied to these problems. In these approaches, of course, better quality of solutions...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995